REPORT 1271

ON BOATTAIL BODIES OF REVOLUTION HAVING MINIMUM WAVE DRAG!

By Kerre C. Harprr and CoNRAD RENNEMANN, JB.

SUMMARY

The problem of determining the shape of slender boattail
bodies of revolution for minimum wave drag has been reex-
amined. It was found that minimum solutions for Ward's
slender-body drag equation can exist only for the resiricted
class of bodies for which the rate of change of crosssectional
area at the base 18 zero. In order to eliminate this restriction,
certatn higher order terms must be retained in the drag equation
and isoperimetric relattons. The minimum problem for the
isoperimetric conditions of given length, volume, and base area
18 treated as an example. According to Ward's drag equation,
the resulting body shapes have slightly less drag than those
determined by previous investigators.

INTRODUCTION

An approximate expression for the wave drag of slender
bodies of revolution having zero rate of change of cross-
sectional area at the base was first given by Von Kérmén
(ref. 1). By using this expression, together with the calculus
of variations, several investigators (refs. 1 to 3) have deter-
mined minimum-wave-drag bodies for various isoperimetric
conditions. Later, Ward (ref. 4) derived the slender-body
approximation for the drag of bodies with a nonzero rate of
change of cross-sectional ares at the base.

In reference 5, Adams considered several minimum-wave-
drag problems on the basis of Ward’s equation. In each case
he concluded that the minimum-drag body had zero slope
at the base. This conclusion implied that the minimum
shapes for Ward’s equation are the same as those for Von
Kirmdn’s. Recently, Parker (ref. 6) presented a different
expression for the wave drag of slender bodies and showed
that the optimum body having given length and base area
has a finite slope at the base. Clearly, this result is not in
agreement with that obtained by Adams.

In the present report, the problem of determining
minimum-drag boattail bodies of revolution on the basis of
linear theory is reexamined with particular emphasis on the
choice of drag equation, isoperimefric relations, and method
of calculating the body shape. The minimum problem for
the isoperimetric conditions of given length, volume, and
base area is treated as an example.

DISCUSSION OF MINIMUM-WAVE-DRAG PROBLEM

Within the approximations of linear theory, the supersonic
flow past slender bodies of revolution can be represented by
a distribution of sources along the axis of the body. The
wave drag D of the body may be related to the source
distribution (ref. 1) by
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provided the source distribution f(z) is zero at the nose and
the base (i. e., f(0)=f(l)=0) where p is the stream density
and U is the stream velocity. The coordinate system is

shown in the following sketch:

r
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In the slender-body approximation, the source strength is
related to the body cross-sectional-area distribution A(z) by

fa=E—2mR R ) @

and the restriction that f()=0 implies that either the body
is closed (KH(})=0) or that the body has zero slope at the
base (R’ (l)=0).

Several investigators (refs. 1 to 3) have determined mini-
mum-wave-drag bodies for various isoperimetric conditions
by sapplying the calculus of variations to equation (1).
However, as a result of the restriction that f(I)=0, these
shapes can be considered optimum only for the restricted
class of bodies having zero rate of change of cross-sectional
area at the base.

1 Bupersedes NACA Techunieal Note 3478 by Keith O. Harder and Conred Rennemann, Jr., 1955,
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WARD'S DRAG EQUATION

An equation which does not have the restriction that
J (@) =0 was proposed by Ward (ref. 4) on the basis of slender-
body theory as
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where f=+/2—1 and M is the Mach number. Thesource

strength is again related to the body geometry by equa-
tion (2).

The problem of determmmg the source distribution which
minimizes the drag given by equation (3) for given isoperi-
meftric conditions without specifying the value of f(7) at the
outset is a variable end-point problem of the calculus of
variations. In appendix A this problem is considered for
a general type of isoperimetric condition where it is shown
that, if a mathematical minimum exists, it satisfies the con-
dition f(J)=0. The significance of the mathematical solu-
tion obtained by the variational procedure warrants further
consideration since the variational procedure assumes the
existence of a solution at the outset and, consequently, can
lead only to necessary conditions for the attainment of an

extremum. Three mutusally exclusive possibilities must be

considered :

(1) A minimum for Ward’s equation exists for the class
of bodies having all values of the slope at the base and
satisfies the condition f(7)=0. .

(2) A minimum for Ward’s equation exists only for the
restricted class of bodies for which f(Z)=0.

(3) No minimum exists for Ward’s equation.

A single example, not satisfying the condition f(7)=0 but
having less drag than the shape obtained by the variational
procedure, is sufficient to eliminate the first possibility.
Perhaps the simplest example is the cone which, for given
length and base area, has less drag than the variational min-

imum (Von Kérmén’s ogive) for 8 Ra)zo 164. However,

& more illuminating example is given by the body

A0

A= -
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where A(l) is the base area, I’=I-}e¢, and ¢ is a parameter
related to the slope at the base R’(l) by

R()log, & ¢

2 (l—l— elog, 7)

R')=
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For this body, Ward’s equation (eq. (3)) gives the result that,

for small ¢,
v >;s:|
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. which approaches minus infinity as e approaches zero; that is,

as the slope and curvature at the base both epproach infinity.
(The mathematical symbol O( ) denotes the order of a func-
tion.) The body shape for e==0 is shown in the following
sketch:

In order to decide between’ the second and third possibil-
ities, it would be necessary to prove the existence or non-
existence of a minimum solution for Von Kérmén’s drag
equation (eq. (1)). Such a study is beyond the scope of the
present report; however, it should be noted that the min-
imum solutions obtained for Von Kfrmén’s equation havs
provided a useful guide in the search for low-drag shapes,
It is in this same vein that, later in the report, minimum
problems are considered on the basis of a different drag
equation. Since existence proofs are not attempted, the
most that can be claimed is that, if a solution exists, it must
have a certain mathematical form. However, in order to
avoid the repetition of this qualifying remark in the remainder
of the report, solutions obtained by the calculus of variations
are referred to as minimum solutions.

The problem under discussion has been previously consid-
ered by Adams (ref. 5) who correctly determined the neces-
sary conditions for & minimum. His interpretation of these
conditions was that the optimum boatteil body has zero rate
of change of cross-sectional area at the base. However, the
proper interpretation is that, if & minimum exists, it exists
only for the restricted class of bodies having zero rato of
change of cross-sectional area at the base.
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PARKER'S DRAG EQUATION

From the preceding discussion, it is clear that Ward’s drag
equation (eq. (3)) cannot be used to determine minimum-
drag boattail bodies.? Parker (ref. 6) has shown that applica-
tion of the calculus of variations to the drag equation

drD_ [IBRO (1pRO) _1|—=5(—=x)—8*Rx(])
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which he obtained on the basis of linear theory, yields a

minimum without the restriction that f(Z)=0 for the isoperi- -

metric conditions of given length and base area. The body
shape so determined has a finite slope at the base and less
drag than the mathematical minimum for equation (3).

Equation (5) contains some higher order terms which are
not included in the slender-body approximation to the drag
(eq. (3)) since Parker did not make the slender-body approxi-
mation to the velocity potential in the derivation. Appar-
ently, the additional terms are necessary in order to obtain
minimum-drag shapes without the restriction that f(Z)=0.
However, it should not be inferred that equation (5) neces-
sarily gives a better estimate of the drag of bodies satisfying
the assumptions of slender-body theory than equation (3).
Lighthill (ref. 8) has shown that the slender-body equations
(egs. (2) and (3)) are fully as accurate as the linearized dif-
ferential equations of motion for sufficiently smooth bodies.
Consequently, the slender-body results are theoretically
equivalent to those obtained without making the slender-
body approximation.

ISOPERIMETRIC CONDITIONS

The isoperimetric conditions most commonly considered
have been those of fixed length, volume, and base area. In
order to carry out the mathematical details of determining
the source strength which minimizes the drag, the isoperi-
metrie conditions must be directly related to the source
strength, The simplest relations would appear to be those
given by slender-body theory. However, in order to carry
out the analysis on the basis of Parker’s equation, certain
higher order terms must be retained in the isoperimetric
relations. In particular, the limits of integration in the
isoperimetric relations must be the same as those in the drag
equation, Furthermore, the analysis can sometimes be
simplified by including certain additional higher order terms
in the integrahd of the isoperimetric relations.

The relation between the isoperimetric conditions and
gource strength used in the example to be treated in the
present report is obtained by apprommately satisfying the
boundary conditions on a cone passing through the nose

1 Egsontially tho same arguments can be used to show that nghthﬂl's drag equation (ref.

7), which was derived for slender shapes with dizcontinuities in slope, cannot be used to
determine minimum-drag bodies with corners.
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and base. The linear-theory expression for A’(z) is
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where  is on the body surface. Equation (6) is approxi-
metely satisfied by evaluating the integral on the cone
r=R(@) 7 Then,
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where use has been made of the condition f(0)=0. Simi-
larly, the volume ¥ is given approximately by

1 (-8
V~i ﬁ

In the derivation of equations (8) and (9) from equation (7),
terms of the order of &log,5 have been neglected. The
glender-body approximation to the isoperimetric relations
is obtained by equating & to zero in equations (8) and (9).

and

s OV~ 01" dt ®
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CALCULATION OF BODY SHAPE

When the calculus of variations is applied to the drag
equation and isoperimetric relations, the resulting source
strength for minimum drag contains several constants to
be determined from the isoperimetric conditions. The’
celculation of these constants and the body shape can be
treated independently of the minimization process.

Since higher order terms have been retained in the drag
equation and isoperimetric relations, the question arises
a8 to whether similar terms should be retained in the body-
shape calculation. Theoretically, the inclusion of these
terms does not affect the accuracy of the result for shapes
satisfying the assumptions of slender-body theory. Even
80, 1t is interesting to compare the various body shapes
obtained from the source distribution

FE&=K~E[l+-BR(D)—E (10)

found by Parker to give minimum drag for the isoperimetric
conditions of given length and base area. In equation (10),
K is a constant to be determined from the isoperimetric
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conditions. The numerical value of K depends on the method
used to calculate the body shape.

Parker calculated the body shape from this source distri-
bution without making the slender-body approximation by
numerically solving the integral equation

Ro= [ p O TFRDE

The body shape calculated from equation (10) by means of
the slender-body expression A’(z)=f(z) is

A(:c)=2(1—K——£), [ty1—£2Fcos 1 (—8)] (—1=t=c) (12

where .
z_ 14t KD AQ) ond o [ —BEQ),
I 14+¢ 201+ ¢1—c?+cos™ (—c), {+BR()

When the expression A’ (z)=7(z)'is altered to take partially
into account the fact that a given point on the body is
influenced only by sources in the upstream Mach cone by
equating

dA(:c)_ J'( I:l PEY) R(l) 13)

the body shape is given by

AC=g7 _l_)[tv —tcos™! (—)] (—1=t=2e—1)

(14)
where

and
K A
4e(1+¢) 2(2c—1) e(l—c)+cos~! (1—2¢)

The body shapes calculated by means of equations (11),
(12), and (14) for g -~ R(l) =0.2 are compared in figure 1. The
differences between the. shapes are small even for this rather
large value of g——% ( E®, For smaller values of g—~-% (l) the differ-

ences are even less and the shapes become coincident as 8 —-= R(l)

approaches zero. Similar body-shape ‘calculations based on

——— Parker {eq (1))
———— Slender body (eq. (12)) 7
Modified stender body (eq.(14))

él“l .
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§ .

3

s
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Axial coordinate, x/1

¥iqure 1.—Comparison of body shapes calculated from source ditrsi-
bution given by equation (10) by various methods for B!;§ZZ=O.2.
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equations (2) and (13) for the source strength that is derived
in the example (fixed volume, length, and base area) were

performed for 8 R(l)—0.05 and several values of g Ll:’ where

V is the volume. Thls comparison is not presented since the
body shapes obtained by the two methods are almost iden-
tical. Evidently, the difference in body shape is appreciable
only for shapes that cannot be considered slender. Conse-
quently, the simpler slender-body relation is preferable.

The discussion concerning the inclusion of higher order
terms is briefly summarized as follows: Higher order terms
must be retained in the drag equation in order to obtain the
minimum-~drag boattail body; having done this, higher order
terms must also be retained in the isoperimetric relations in
order to perform the analysis. Once the source strength for
minimum drag has been determined within several unde-
termined constants, higher order terms need not be retained
in the calculation of the shape and drag of bodies satisfying
the assumptions of slender-body theory.

PROBLEM OF LENGTH, VOLUME, AND BASE AREA

The problem of determining the body shape that gives
minimum wave drag for fixed length, volume, and base area
is treated in order to illustrate the ideas developed in the
preceding sections. The minimum-drag body having given
length and base area or given length and volume can be
obtained as special cases of the problem under consideration.

The source distribution for minimum drag is obtained by
applying the calculus of variations to equations (5), (8),
and (9), and as shown in appendix B, this leads to the source

distribution
F@®=(a+bt)vEll—£t+BR(1) (15)

where ¢ and b are constants to be determined from the
isoperimetric conditions.

As discussed in the previous section, the body shape is
determined on the basis of the slender-body equations.
Integration of 4’ (z)=f(z) gives

A6 {5 10T heor™ (- —F a7}

(—1st=c) (16)

where
s itt _IPRQ g LHRQ),
14-¢ I+BR(1) -2,
and
Amay RO,

The base area is given by
A=ty {5 =P +eos~ (oG a—apr )

The volume is obtained from equation (16) as
. 3
V=2(_1l—|—7)5 {A I:c cos™! (-c)+1f1_——c-’-—% (1—c? |—

—g[% (1—e%)¥34-cy/1—¢*+cos™ (—0)]} (18)
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Equation (16) for A(z) (with the use of egs. (17) and (18))

reduces to the minimum-drag body shape given by Haack’

(vef. 3) and Adams (ref. 5) when ¢c=1. In this case, A(z)

is given by
A\a:)=A(l) [tv1—t*+cos™ (—t)l+
8 [%CA(Z)]. A—tPr(—15t=<1) (19)
where
z_ 1+%
1 2

This body was obtained by Haack on the basis of Von
Kérmén’s drag equation (eq. (1)) and by Adams on the
basis of Ward’s drag equation and is referred to in the
remainder of the report as the Haack-Adams body.

The constants 4 and B in the equation for the body
shape (eq. (16) ) are determined from equations (17) and
(18) in terms of [, B, R(l), and V. The solution may be
expressed as

A=A—A8 T, (20)
and
$’B=B,—B,#* ;—i (21)

where A;, 4s, B;, and B; are functions of 8 R(l)- Values of

Ay, Az, By, and B, are given in table I for values of § =~ R(l)

between 0.01 and 0.10.

A direct comparison of the drag of the body of the present
report with that of the Haack-Adams body is made on the
basis of Ward’s drag equation. From equation (3), the drag
of the source distribution given by equation (15) is

D 1 lz 9 -1 ] — =1 ( _a)—
W,:gr(—l—w(ri {[cos™(—c)]*+2¢c1—¢? cos™! (—c)

(1—¢)} —4ABA—c) e+
B (o—5e(1—c)+26 V1= (26'—1) cos~ (— o)+
(cos™ (—O)I+2AA+BF(—)logu H1+9]) (2

1—c? cos™ (—o)]+

TABLE I
COEFFICIENTS OF EQUATIONS (20) AND (21)
74 \ e
84 -A;—AaB’T,- ﬁ’Ban—B:B’F
ﬂR_gZ (eq. (20)) (eq. (a1))

Ay As By By
0.10 0. 080573 0. 76164 0. 26504 18. 0291
.09 . 064852 . 66854 .21938 18.1468
08 . 050946 . 57668 . 17531 18.2780
07 . 038807 . 48044 . 13590 18. 4255
08 . 028390 . 30843 . 10121 18. 5019
05 . 010853 . 31338 . 071357 18. 7809
04 . 012654 . 23231 - 046443 18.0973
03 . 0070607 . 15069 . 026023 10.2482
2 . 0031450 . 088843 . 012081 19, 5430
01 . 000708068 . 032849 0031002 19, 8686
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The drag of t.he Ha.ack—Adams body is

{ 0 40 4557 __A(Z):I} ©3)

The form of equa.tlons (20), (21), and (22) indicates that
ﬁl’?’?l’ is a function of g* IE a.nd B == R(l) In figure 2, the drag

of the Haack-Adams body (eq. (23) ) and the drag given by
equation (22) are plotted on & logarithmic scale for several

values of 8 M- To help orient the reader, several body

Rl(l) =0.05. The drag given by

equation (22) is somewhat less than that of the Haack-

shapes are shown for p=1,

Adams body for most values of g? ;Za- For example, for

R(l)

——=%=0.05 and g lT—§=O.01, which represents a fuselage-

type shape, the body given by equation (16) has approxi-
mately 7% percent less drag than the Haack-Adams body

Eeach drag curve begins at a particular value of g? l3>0

(l)

for a given value of 8§ ——% smaller values of £ 2—1 give rise

to negative body areas. (
)

For a given value of 8 =55 the slope at the base of the

body is positive for small values of g2 ZV; and is negative for
large values. The two drag curves become nearly tangent
14 for which the body slope at

the base is near zero. Actu&]ly, the Haack-Adams body
must have less drag for this condition since this body gives
minimum drag for Ward’s equation for the class of bodies
which have zero slope at the base.

at intermediate values of ﬂ"

The value of £ 2’—3 for minimum drag is obtained, for o
(l)

given value of 8

(17) and (18). Th].S procedure gives the optimum body
having a given length and base area.
In figure 3 the body shape of the present report is com-

pa.red with the Haack-Adams body for (l)—o.os and

8 —=0.003 and 0.02. The bodies are plotted to an expanded
l3

vertical scele (expanded 5 times) to illustrate the differences
which for the most part are small. The most significant

difference occurs near the base for the larger values of 5 %

».by equating B to zero in equations

where the body given by equation (16) does not exhibit the
reflex shape of the afterbody characteristic of the Haack-
Adams body.

The effect of Mach number on body shape is illustrated in
figure 4 where the optimum shapes (vertical scale enlarged
2% times) for ﬂ—0 05 and %—0 02 are compared for
M=+2 and M—w,/_ 5. The body shape of the present report
exhibits a small dependence on Mach number, whereas the
Haack-Adams body is independent of Mach number.
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14 .
Equation (22)
———— Haack-A
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Fiaure 3.—Comparison of Haack-Adams body with that given by
equation (22) for B@=0.05.

CONCLUSIONS

The problem of determining the shape of slender boattail
bodies of revolution for minimum wave drag has been re-
examined and the following conclusions are indicated:

1. Minimum solutions for Ward’s drag equation can exist
only for the restricted class of bodies for which the rate of
change of cross-sectional area at the base is zero.

2. In order to eliminate this restriction, certain higher
order terms must be retained in the drag equation and
isoperimetric relations. However, higher order terms need
not be retained in the ecalculation of drag and body shape
from the source distribution.
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Fiaure 4.—Effect of Mach number on body shape given by equation

(22) for%=0.02 and R_M_o 05.

3. Adams in NACA Technical Note 2550 correctly deter-
mined the necessary conditions for a minimum for Ward’s
drag equation. His interpretation of these conditions was
that the optimum boattail body has zero rate of change of
cross-sectional area at the base. However, the proper inter-
pretation is that, if & minimum exists, it exists only for the
restricted class of bodies having zero rate of change of cross-
sectional area at the base.

4. Application of the ideas expressed in conclusion 2 to
the minimum problem of given length, volume, and base area
led to body shapes which have slightly less drag than the
Hasack-Adams body.

LaneLey AERONAUTICAL LLABORATORY,
NaTionar Apvisory CoMMITTEE FOR AERONAUTICS,
Lanerey Fieup, Va., June 8, 19556.

APPENDIX A
APPLICATION OF CALCULUS OF VARIATIONS TO WARD’S DRAG EQUATION

In this appendix the calculus of variations is applied to
Ward's drag equation (eq. (3)) for a general type of isoperi-
metric condition to determine the source strength for mini-
mum drag when the source strength at the base f(I) is not
specified at the outset. From equation (3), Ward’s drag
equation is

[ [ rer@os o~z as+

210) [ 70 log, (—pde—r @ log s 5D (a)

The usual isoperimetric conditions considered may be related
to the source strength by expressions of the form

4
L= [ @oea (A2)
For example, g(£)=1 for fixed base area and g(¢)=({—¢&) for
fixed volume. In the subsequent analysis, it is assumed that
one of the isoperimetric conditions is that of fixed base area.
This assumption simplifies the analysis without restricting
its generality.

In the derivation of equation (A1)-it is assumed that

J(0)=0

Equation (A3) gives one of the end-point conditions to be
satisfied by the minimizing source distribution. At the other
end point, =1, the value of f(z) is not prescribed.

The source distribution for minimum drag is obtained by
considering the variation of the function

J—@+E WA

(A3)

(A4)

where the Liagrange multipliers A; are determined from the
isoperimetric conditions. The variation of equation (A4)
is obtained by considering the one-parameter family of com-
parison functions (see ref. 9, for example)

J@)=F@)+en(x)

where F(z) is the function which minimizes equation (A4),
¢ is the parameter of the family, and 5(z) is an arbitrary func-
tion within the condition

7(0)=0

(A5)

(A8)
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This condition arises since all the comparison functions must
satisfy the same end-point condition as the minimizing func-
tion. Since no end-point condition is preseribed at z=l,
n(l) is arbitrary.

From equations (A4) and (A5) J is g function of € and the
source strength for minimum drag is determined from the
condition

o= o[- [ T2 Y o |aer

de «=0

(0| lim PO log, 570 (A7)

BE(Q)
where the equation has been simplified by several integra-
tions by parts and use of equations (A3) and (AS6).

Since equation (A7) must hold for all choices of 5(¢) con-
sistent with equation (A6), it must in particular hold for
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those choices of %(£) for which 3(I)=0. For such %(£),
' d (" Flz)dx M _
[0 -5 [ 22215} 0@ a0

and from the basic lemma of the calculus of variations (ref. 8),

Ttz
[ T

With this result, and for general n(£) once again, that is, n(l)
not necessarily equal to zero, the end-point condition ob-
tained is that

(A8)

. 20—87_
lim I:F(l) log. 7 |0 (A9)
In order to satisfy this condition, () must equal zero. Con-

sequently, the body shapes which give 2 mathematical
minimum for Ward’s equation, if they exist, must have zero
rate of change of cross-sectional area at the base.

APPENDIX B
APPLICATION OF CALCULUS OF VARIATIONS TO PARKER’S DRAG EQUATION

The source distribution for minimum drag for the isoperimetric condition of given length, volume, and base area is ob-
tained by considering the variation of the function

J—";’ﬁ FNAQFNT

(B1)
where D, A(l), and V are given by equations (5), (8), and (9), respectively, and A; and »; are Lagrange multipliers. By
proceeding in the same manner as in appendix A, the variation of equation (B1) is obtained by considering the one-parameter
family of comparison functions.

f@=F@)+ en(z)

where F(z) is the function which minimizes equation (B1), eis the parameter of the family, and 5(z) is an arbitrary function
within the condition »(0)=0.

(B2)

The source strength for minimum drag is then determined from the condition

&) o [T d [ (0PI FED 4, [y i
d‘ﬂ.-r" f "(‘f>ds{2ﬁ —ti——pmg C T ¢ E)]J_(Z—E)——ﬁ’R ('Z)}d£+

1—8R (1) —5*—BR(]) -

W—B0) B { 2] S g | Mg (-0 VTR0 |

where the equation has been simplified by several integrations by parts and use of the conditions
F(0)=n(0)=0

Since equation (B3) must hold for all choices of n(£) consistent with (0)=0, it must in particular hold for those choices
of 5(¢) for which 5[I—gR({@)]=0. For such (%),

o0 4 [ (10RO Pa) T — PR —
J7 0 {27 FOEEEEY dot [0ty 4 [VTT R =0

and from the basic lemma of the calculus of variations,

—8E®) F(z) JI—8*—B*E3())
2ﬁ —£ J(l—z’— B BNl dx+|:>“

B3)

21— s)]f(z' =R ()= (B4)
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where N is a constant. With this result, and for general
7(£), the end-point condition is obtained as

im,. {2 FOCOFTD,
E—I—BR(D) 0 r—£ . Jl—2)—BR(])

Dt 4 [VO=5—F R0 }=0 ®5)

+

Since equation (B4) must hold for all values of £, and in
particular for {»]—pBR(l), from equation (B5), N=0. Hence,
\(I—£?—BR*(I) can be canceled from each term of equation
(B4) and the following integral equation is obtained for the
source strength:

1-BE®) F(z) Ie- N

The solution of equation (B6) satisfying the condition F(0)
=0 is

F)=f(®)=(a+be)vE[l—E+BRD)] (B7)

where @ and b are constants related to A\; and X,.
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